Polynomials for primitive extensions of \mathbb{Q}_{p}

 David P. Roberts University of Minnesota, MorrisAdvance warning: I took the workshop directions please come with some half-baked ideas to share to heart!

Note: The topic of this talk arose in connection with joint work with Fred Diamond and Lassina Dembélé. This work relates p-adic ramification of number fields with weights of corresponding Hilbert modular forms. On the number field side, primitive p-adic fields enter prominently. It is necessary to thoroughly distinguish these primitive fields from each other, because similar-looking p-adic fields can correspond to different weights.

The Problem. Let $q=p^{f}$ be a prime power and $s \in \mathbb{Z}_{\geq 1}$.

Definition. $A_{q, s}$ is the set of isomorphism classes of primitive degree q extensions of \mathbb{Q}_{p} with discriminant p^{q-1+s}.

Examples. (Weil, Exercises dyadiques):

$$
\begin{aligned}
A_{4,1}= & \left\{\mathbb{Q}_{2}[x] /\left(x^{4}+2 x+2\right)\right\} \\
A_{4,3}= & \left\{\mathbb{Q}_{2}[x] /\left(x^{4}+2 x^{3}+2 x^{2}+2\right)\right\} \\
A_{4,5}= & \left\{\mathbb{Q}_{2}[x] /\left(x^{4}+4 x+2\right)\right. \\
& \left.\mathbb{Q}_{2}[x] /\left(x^{4}+4 x^{2}+4 x+2\right)\right\} \\
\text { else } A_{4, s}= & \emptyset
\end{aligned}
$$

Problem. Write down a complete irredundant set of polynomials for each $A_{q, s}$.

The case $f=1$ was solved by Amano, the primitivity condition being vacuous; we'll exclude it here.

Some context and definitions. There are totally ramified degree q extensions of \mathbb{Q}_{p} of discriminant p^{q-1+s} exactly when s is in a certain subset of $\left\{1, \ldots, f p^{f}\right\}$. For $q \in\{4,8,9\}$, these sets are as follows:

$q=4:$| 1 | | 3 |
| :---: | :---: | :---: |
| | 7 | 8, |

$q=9:$| 1 | 2 | | 4 | 5 | | 7 | 8 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |

Primitive extensions can only exist when

$$
s \leq p^{f}+p^{f-1}+\cdots+p
$$

and $\operatorname{ord}_{p}(s)=0$, as boxed. We say s is of Type 1 or Type 2 according to whether $s<q$ or $s>q$. We say that s is generic if its reduction \bar{s} to $\mathbb{Z} /(q-1)$ is in an orbit under multiplication by p of full size f. To simplify, we exclude here the non-generic case, thus the s in italics above.

Conjectural solution in Case 1. Given $s<q$, define an exponent set $E(q, s)$ as follows. Write s as an f-digit number in base p, taking all digits from $\{0, \ldots, p-1\}$ as usual. For $j=0$, $\ldots, f-1$, round down to $\lfloor s\rfloor_{j}$ by dropping the j least significant digits. Simultaneously, rotate the f-digit number s digitwise, j places to the right, to obtain $R_{j}(s)$. Then

$$
E(q, s)=\left\{\lfloor s\rfloor_{j}: R_{j}(s) \leq s\right\} .
$$

Conjecture. When $s<q$, a complete irredundant set of polynomials for $A_{q, s}$ is

$$
x^{q}+\sum_{e \in E(q, s)} p a_{e} x^{e}+p
$$

with $a_{e} \in\{0, \ldots, p-1\}$ and $a_{s} \neq 0$.

Note: $p a_{s} x^{s}$ functions as a suitably leading term, ensuring that the discriminant is indeed p^{q-1+s}.

Example 1A: $(q, s)=(81,59)$:

| j | $\lfloor s\rfloor_{j}$ | | $R_{j}(s)$ |
| :---: | :---: | :---: | :---: | Keep?

So polynomials for $A_{81,59}$ should be

$$
x^{81}+3 a x^{59}+3 b x^{54}+3
$$

with $a \in\{1,2\}$ and $b \in\{0,1,2\}$.

Example IB: $(q, s)=(81,73)$:

| j | $\lfloor s\rfloor_{j}$ | | $R_{j}(s)$ |
| :---: | :---: | :---: | :---: | Keep?

So polynomials for $A_{81,73}$ should be

$$
x^{81}+3 a x^{73}+3 b x^{72}+3 c x^{54}+3,
$$

with $a \in\{1,2\}$ and $b, c \in\{0,1,2\}$.

Conjectural solution in Case 2. Given $s>q$, now define $E(q, s)$ as follows. Again write s as an f-digit number in base p, but now requiring all digits to be in $\{1, \ldots, p\}$. For $j=0, \ldots$, $f-1$, again round down to $\lfloor s\rfloor_{j}$ by dropping the j least significant digits. Again simultaneously rotate s digitwise j places rightwards to obtain $R_{j}(s)$. Let

$$
\begin{aligned}
\tilde{E}(q, s)= & \{s+1\} \cup \\
& \left\{\lfloor s\rfloor_{j}>q: R_{j}(s) \leq s \text { or } s \mid R_{j}(s)\right\} .
\end{aligned}
$$

Then $E(q, s)=\{k-q: k \in \tilde{E}(q, s)\}$.
Conjecture. When $s>q$, a complete irredundant set of polynomials for $A_{q, s}$ is

$$
x^{q}+\sum_{e \in E(q, s)} p^{2} a_{e} x^{e}+p,
$$

with $a_{e} \in\{0, \ldots, p-1\}$ and $a_{s-q} \neq 0$.
Note: Now $p^{2} a_{s-q} x^{s-q}$ is the term which ensures that the discriminant is p^{q-1+s}.

Example 2A. $(q, s)=(81,97)$.

So polynomials for $A_{81,97}$ should be $x^{81}+9 a x^{17}+9 b x^{16}+9 c x^{15}+9 d x^{9}+3$, with $b \in\{1,2\}$ and $a, c, d \in\{0,1,2\}$.

Example 2B. $(q, s)=(32,45)$.

j	$\lfloor s\rfloor_{j}$		e	$R_{j}(s)$	Keep?
	$12221=46$	\rightarrow	14		\checkmark
0	12213	12221	\checkmark		
1	$12220=44$	\rightarrow	12	11222	\checkmark
2	$12200=40$	$\rightarrow 8$	21122	\checkmark	
3	$12000=32 \rightarrow 0$	22112			

So polynomials for $A_{32,45}$ should be

$$
x^{32}+4 a x^{14}+4 b x^{13}+4 c x^{12}+4 d x^{8}+2 .
$$

with $b=1$ and $a, c, d \in\{0,1\}$.

Concluding Remarks. 1. Decompose $A_{q, s}=$ $\amalg_{j=1}^{p-1} A_{q, s, j}$ according to the leading coefficients $j=a_{e}$ in the conjectures. The spaces $A_{q, s, j}$ with $\bar{s} \in \mathbb{Z} /(q-1)$ in the same orbit under multiplication by p should fit together to form f dimensional projective spaces:

q	s	Polys	$\#$
4	1	$x^{4}+2 x+2$	1
	5	$x^{4}+4 a x^{2}+4 x+2$	2
8	1	$x^{8}+2 x+2$	1
	9	$x^{8}+4 a x^{2}+4 x+2$	2
	11	$x^{8}+4 a x^{4}+4 x^{3}+4 b x^{2}+2$	4
8	3	$x^{8}+2 x^{3}+2$	1
	5	$x^{8}+2 x^{5}+2 a x^{4}+2$	2
	13	$x^{8}+4 a x^{6}+4 x^{5}+4 x^{4}+2$	4
9	1	$x^{9}+3 j x+3$	1
	11	$x^{9}+9 a x^{3}+9 j x^{2}+3$	3
9	2	$x^{9}+3 j x^{2}+3$	1
	10	$x^{9}+9 a x^{2}+9 j x+3$	3
9	5	$x^{9}+3 j x^{5}+3$	1
	7	$x^{9}+3 j x^{7}+3 a x^{6}+3$	3

In the application with Diamond and Dembélé, the projective spaces arise naturally from certain H^{1}, and their pavings by $\operatorname{ord}_{p}(D)$ form a secondary structure.
2. The conjecture has an analog when one replaces p by any other choice of uniformizer. I think the ambiguities associated with this change are also seen on the automorphic side.
3. One should be able to describe the space of all Eisenstein polynomials belonging to a given field, as a suitable neighborhood of our preferred point.
4. A possible proof would involve the canonical Galois extension F of \mathbb{Q}_{p} with inertial index f and ramification deqree $q-1$, and then abelian degree p extensions L of F. These L and the primitive K of the main talk are related by resolvent constructions.
5. Besides removing our standing genericity-of-s assumption, it would be desirable to replace \mathbb{Q}_{p} by an arbitrary p-adic base field.

