Polynomials for primitive extensions of \mathbb{Q}_p David P. Roberts University of Minnesota, Morris

Advance warning: I took the workshop directions *please come with some half-baked ideas to share* to heart!

Note: The topic of this talk arose in connection with joint work with Fred Diamond and Lassina Dembélé. This work relates p-adic ramification of number fields with weights of corresponding Hilbert modular forms. On the number field side, primitive p-adic fields enter prominently. It is necessary to thoroughly distinguish these primitive fields from each other, because similar-looking p-adic fields can correspond to different weights. The Problem. Let $q = p^f$ be a prime power and $s \in \mathbb{Z}_{\geq 1}$.

Definition. $A_{q,s}$ is the set of isomorphism classes of primitive degree q extensions of \mathbb{Q}_p with discriminant p^{q-1+s} .

Examples. (Weil, Exercises dyadiques):

el

$$A_{4,1} = \{\mathbb{Q}_2[x]/(x^4 + 2x + 2)\},\$$

$$A_{4,3} = \{\mathbb{Q}_2[x]/(x^4 + 2x^3 + 2x^2 + 2)\},\$$

$$A_{4,5} = \{\mathbb{Q}_2[x]/(x^4 + 4x + 2),\$$

$$\mathbb{Q}_2[x]/(x^4 + 4x^2 + 4x + 2)\},\$$
se $A_{4,s} = \emptyset.$

Problem. Write down a complete irredundant set of polynomials for each $A_{q,s}$.

The case f = 1 was solved by Amano, the primitivity condition being vacuous; we'll exclude it here.

Some context and definitions. There are totally ramified degree q extensions of \mathbb{Q}_p of discriminant p^{q-1+s} exactly when s is in a certain subset of $\{1, \ldots, fp^f\}$. For $q \in \{4, 8, 9\}$, these sets are as follows:

Primitive extensions can only exist when

$$s \le p^f + p^{f-1} + \dots + p$$

and $\operatorname{ord}_p(s) = 0$, as boxed. We say s is of Type 1 or Type 2 according to whether s < q or s > q. We say that s is generic if its reduction \overline{s} to $\mathbb{Z}/(q-1)$ is in an orbit under multiplication by p of full size f. To simplify, we exclude here the non-generic case, thus the s in italics above. **Conjectural solution in Case 1.** Given s < q, define an *exponent set* E(q, s) as follows. Write s as an f-digit number in base p, taking all digits from $\{0, \ldots, p-1\}$ as usual. For j = 0, \ldots , f-1, round down to $\lfloor s \rfloor_j$ by dropping the j least significant digits. Simultaneously, rotate the f-digit number s digitwise, j places to the right, to obtain $R_j(s)$. Then

$$E(q,s) = \{ \lfloor s \rfloor_j : R_j(s) \le s \}.$$

Conjecture. When s < q, a complete irredundant set of polynomials for $A_{q,s}$ is

$$x^q + \sum_{e \in E(q,s)} pa_e x^e + p$$

with $a_e \in \{0, ..., p-1\}$ and $a_s \neq 0$.

Note: pa_sx^s functions as a suitably leading term, ensuring that the discriminant is indeed p^{q-1+s} .

Example 1A: (q, s) = (81, 59):

j		$s floor_j$		$R_j(s)$	Keep?
0		=	59	2012	\checkmark
1	2010	=	57	2201	
2	2000	=	54	1220	\checkmark
3	2000	=	54	0122	(√)

So polynomials for $A_{81,59}$ should be

 $x^{81} + 3ax^{59} + 3bx^{54} + 3,$

with $a \in \{1, 2\}$ and $b \in \{0, 1, 2\}$.

Example IB: (q, s) = (81, 73):

j	L	$s \rfloor_j$		$R_j(s)$	Keep?
0	2201	=	73	2201	\checkmark
1	2200	=	72	1220	\checkmark
2	2200	=	54	0122	\checkmark
3	2000	=	54	2012	(√)

So polynomials for $A_{81,73}$ should be

 $x^{81} + 3ax^{73} + 3bx^{72} + 3cx^{54} + 3,$ with $a \in \{1, 2\}$ and $b, c \in \{0, 1, 2\}.$

Conjectural solution in Case 2. Given s > q, now define E(q, s) as follows. Again write s as an f-digit number in base p, but now requiring all digits to be in $\{1, \ldots, p\}$. For $j = 0, \ldots, f-1$, again round down to $\lfloor s \rfloor_j$ by dropping the j least significant digits. Again simultaneously rotate s digitwise j places rightwards to obtain $R_j(s)$. Let

$$\tilde{E}(q,s) = \{s+1\} \cup \\ \{\lfloor s \rfloor_j > q : R_j(s) \le s \text{ or } s | R_j(s) \}.$$

Then $E(q,s) = \{k - q : k \in \tilde{E}(q,s)\}.$

Conjecture. When s > q, a complete irredundant set of polynomials for $A_{q,s}$ is

$$x^q + \sum_{e \in E(q,s)} p^2 a_e x^e + p,$$

with $a_e \in \{0, ..., p-1\}$ and $a_{s-q} \neq 0$.

Note: Now $p^2 a_{s-q} x^{s-q}$ is the term which ensures that the discriminant is p^{q-1+s} .

Example 2A. (q, s) = (81, 97).

j		$s \rfloor_j$			e	$R_j(s)$	Keep?
			98	\rightarrow	17		\checkmark
0	3121	=	97	\rightarrow	16	3121	\checkmark
1	3120	=	96	\rightarrow	15	1312	\checkmark
2	3100	=	90	\rightarrow	9	2131	\checkmark
3	3000	=	81	\rightarrow	0	1213	

So polynomials for $A_{81,97}$ should be

 $x^{81} + 9ax^{17} + 9bx^{16} + 9cx^{15} + 9dx^9 + 3$, with $b \in \{1, 2\}$ and $a, c, d \in \{0, 1, 2\}$.

Example 2B. (q, s) = (32, 45).

j	L.	$s \rfloor_j$			e	$R_j(s)$	Keep?
		×	. •	\rightarrow	— •		\checkmark
0	12221	=	45	\rightarrow	13	12221	\checkmark
1	12220	=	44	\rightarrow	12	11222	\checkmark
2	12200	=	40	\rightarrow	8	21122	\checkmark
3	12000	=	32	\rightarrow	0	22112	

So polynomials for $A_{32,45}$ should be

 $x^{32} + 4ax^{14} + 4bx^{13} + 4cx^{12} + 4dx^8 + 2.$ with b = 1 and $a, c, d \in \{0, 1\}.$ **Concluding Remarks. 1.** Decompose $A_{q,s} = \prod_{j=1}^{p-1} A_{q,s,j}$ according to the leading coefficients $j = a_e$ in the conjectures. The spaces $A_{q,s,j}$ with $\overline{s} \in \mathbb{Z}/(q-1)$ in the same orbit under multiplication by p should fit together to form f-dimensional projective spaces:

q	s	Polys	#
4	1	$x^4 + 2x + 2$	1
	5	$x^4 + 4ax^2 + 4x + 2$	2
8	1	$x^{8} + 2x + 2$	1
	9	$x^{8} + 4ax^{2} + 4x + 2$	2
	11	$x^{8} + 4ax^{4} + 4x^{3} + 4bx^{2} + 2$	4
8	3	$x^{8} + 2x^{3} + 2$	1
	5	$x^{8} + 2x^{5} + 2ax^{4} + 2$	2
	13		4
9	1	$x^9 + 3jx + 3$	1
	11	$x^9 + 9ax^3 + 9jx^2 + 3$	3
9	2	$x^9 + 3jx^2 + 3$	1
	10	$x^{9} + 9ax^{2} + 9jx + 3$	3
9	5	$x^9 + 3jx^5 + 3$	1
	7	$x^9 + 3jx^7 + 3ax^6 + 3$	3

In the application with Diamond and Dembélé, the projective spaces arise naturally from certain H^1 , and their pavings by $\operatorname{ord}_p(D)$ form a secondary structure. 2. The conjecture has an analog when one replaces p by any other choice of uniformizer. I think the ambiguities associated with this change are also seen on the automorphic side.

3. One should be able to describe the space of *all* Eisenstein polynomials belonging to a given field, as a suitable neighborhood of our preferred point.

4. A possible proof would involve the canonical Galois extension F of \mathbb{Q}_p with inertial index f and ramification degree q-1, and then abelian degree p extensions L of F. These L and the primitive K of the main talk are related by resolvent constructions.

5. Besides removing our standing genericityof-s assumption, it would be desirable to replace \mathbb{Q}_p by an arbitrary p-adic base field.